Copied to
clipboard

G = C42.121D4order 128 = 27

103rd non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.121D4, C4⋊Q823C4, C4⋊C410Q8, C4.29(C4×Q8), C4.30(C4⋊Q8), (C2×C4).63Q16, C42.163(C2×C4), C2.5(C4.Q16), C2.5(D42Q8), (C2×C4).106SD16, (C22×C4).764D4, C23.810(C2×D4), C22.42(C2×Q16), C4.12(Q8⋊C4), C4.49(C4.4D4), (C22×C8).61C22, C22.75(C2×SD16), C22.4Q16.16C2, (C2×C42).333C22, C22.82(C22⋊Q8), C22.100(C8⋊C22), (C22×C4).1421C23, C2.24(C23.37D4), C2.9(C23.67C23), (C2×C4⋊C8).33C2, (C4×C4⋊C4).27C2, C4⋊C4.94(C2×C4), (C2×C4⋊Q8).13C2, (C2×C4).276(C2×Q8), (C2×C4).1361(C2×D4), C2.24(C2×Q8⋊C4), (C2×C4).766(C4○D4), (C2×C4⋊C4).780C22, (C2×C4).435(C22×C4), (C2×C4).262(C22⋊C4), C22.296(C2×C22⋊C4), SmallGroup(128,719)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C42.121D4
C1C2C4C2×C4C22×C4C2×C42C4×C4⋊C4 — C42.121D4
C1C2C2×C4 — C42.121D4
C1C23C2×C42 — C42.121D4
C1C2C2C22×C4 — C42.121D4

Generators and relations for C42.121D4
 G = < a,b,c,d | a4=b4=c4=1, d2=a2b2, ab=ba, ac=ca, dad-1=a-1, cbc-1=dbd-1=b-1, dcd-1=a2bc-1 >

Subgroups: 284 in 146 conjugacy classes, 72 normal (20 characteristic)
C1, C2, C2, C4, C4, C4, C22, C22, C8, C2×C4, C2×C4, C2×C4, Q8, C23, C42, C42, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C2×Q8, C2.C42, C4⋊C8, C2×C42, C2×C42, C2×C4⋊C4, C2×C4⋊C4, C4⋊Q8, C4⋊Q8, C22×C8, C22×Q8, C22.4Q16, C4×C4⋊C4, C2×C4⋊C8, C2×C4⋊Q8, C42.121D4
Quotients: C1, C2, C4, C22, C2×C4, D4, Q8, C23, C22⋊C4, SD16, Q16, C22×C4, C2×D4, C2×Q8, C4○D4, Q8⋊C4, C2×C22⋊C4, C4×Q8, C22⋊Q8, C4.4D4, C4⋊Q8, C2×SD16, C2×Q16, C8⋊C22, C23.67C23, C2×Q8⋊C4, C23.37D4, D42Q8, C4.Q16, C42.121D4

Smallest permutation representation of C42.121D4
Regular action on 128 points
Generators in S128
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 35 29 9)(2 36 30 10)(3 33 31 11)(4 34 32 12)(5 23 108 124)(6 24 105 121)(7 21 106 122)(8 22 107 123)(13 25 39 49)(14 26 40 50)(15 27 37 51)(16 28 38 52)(17 110 118 126)(18 111 119 127)(19 112 120 128)(20 109 117 125)(41 61 71 53)(42 62 72 54)(43 63 69 55)(44 64 70 56)(45 81 67 57)(46 82 68 58)(47 83 65 59)(48 84 66 60)(73 99 113 89)(74 100 114 90)(75 97 115 91)(76 98 116 92)(77 103 93 85)(78 104 94 86)(79 101 95 87)(80 102 96 88)
(1 47 15 53)(2 48 16 54)(3 45 13 55)(4 46 14 56)(5 96 118 100)(6 93 119 97)(7 94 120 98)(8 95 117 99)(9 83 51 41)(10 84 52 42)(11 81 49 43)(12 82 50 44)(17 90 108 80)(18 91 105 77)(19 92 106 78)(20 89 107 79)(21 104 128 76)(22 101 125 73)(23 102 126 74)(24 103 127 75)(25 69 33 57)(26 70 34 58)(27 71 35 59)(28 72 36 60)(29 65 37 61)(30 66 38 62)(31 67 39 63)(32 68 40 64)(85 111 115 121)(86 112 116 122)(87 109 113 123)(88 110 114 124)
(1 6 31 107)(2 5 32 106)(3 8 29 105)(4 7 30 108)(9 24 33 123)(10 23 34 122)(11 22 35 121)(12 21 36 124)(13 117 37 18)(14 120 38 17)(15 119 39 20)(16 118 40 19)(25 109 51 127)(26 112 52 126)(27 111 49 125)(28 110 50 128)(41 79 69 93)(42 78 70 96)(43 77 71 95)(44 80 72 94)(45 75 65 113)(46 74 66 116)(47 73 67 115)(48 76 68 114)(53 101 63 85)(54 104 64 88)(55 103 61 87)(56 102 62 86)(57 97 83 89)(58 100 84 92)(59 99 81 91)(60 98 82 90)

G:=sub<Sym(128)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,35,29,9)(2,36,30,10)(3,33,31,11)(4,34,32,12)(5,23,108,124)(6,24,105,121)(7,21,106,122)(8,22,107,123)(13,25,39,49)(14,26,40,50)(15,27,37,51)(16,28,38,52)(17,110,118,126)(18,111,119,127)(19,112,120,128)(20,109,117,125)(41,61,71,53)(42,62,72,54)(43,63,69,55)(44,64,70,56)(45,81,67,57)(46,82,68,58)(47,83,65,59)(48,84,66,60)(73,99,113,89)(74,100,114,90)(75,97,115,91)(76,98,116,92)(77,103,93,85)(78,104,94,86)(79,101,95,87)(80,102,96,88), (1,47,15,53)(2,48,16,54)(3,45,13,55)(4,46,14,56)(5,96,118,100)(6,93,119,97)(7,94,120,98)(8,95,117,99)(9,83,51,41)(10,84,52,42)(11,81,49,43)(12,82,50,44)(17,90,108,80)(18,91,105,77)(19,92,106,78)(20,89,107,79)(21,104,128,76)(22,101,125,73)(23,102,126,74)(24,103,127,75)(25,69,33,57)(26,70,34,58)(27,71,35,59)(28,72,36,60)(29,65,37,61)(30,66,38,62)(31,67,39,63)(32,68,40,64)(85,111,115,121)(86,112,116,122)(87,109,113,123)(88,110,114,124), (1,6,31,107)(2,5,32,106)(3,8,29,105)(4,7,30,108)(9,24,33,123)(10,23,34,122)(11,22,35,121)(12,21,36,124)(13,117,37,18)(14,120,38,17)(15,119,39,20)(16,118,40,19)(25,109,51,127)(26,112,52,126)(27,111,49,125)(28,110,50,128)(41,79,69,93)(42,78,70,96)(43,77,71,95)(44,80,72,94)(45,75,65,113)(46,74,66,116)(47,73,67,115)(48,76,68,114)(53,101,63,85)(54,104,64,88)(55,103,61,87)(56,102,62,86)(57,97,83,89)(58,100,84,92)(59,99,81,91)(60,98,82,90)>;

G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,35,29,9)(2,36,30,10)(3,33,31,11)(4,34,32,12)(5,23,108,124)(6,24,105,121)(7,21,106,122)(8,22,107,123)(13,25,39,49)(14,26,40,50)(15,27,37,51)(16,28,38,52)(17,110,118,126)(18,111,119,127)(19,112,120,128)(20,109,117,125)(41,61,71,53)(42,62,72,54)(43,63,69,55)(44,64,70,56)(45,81,67,57)(46,82,68,58)(47,83,65,59)(48,84,66,60)(73,99,113,89)(74,100,114,90)(75,97,115,91)(76,98,116,92)(77,103,93,85)(78,104,94,86)(79,101,95,87)(80,102,96,88), (1,47,15,53)(2,48,16,54)(3,45,13,55)(4,46,14,56)(5,96,118,100)(6,93,119,97)(7,94,120,98)(8,95,117,99)(9,83,51,41)(10,84,52,42)(11,81,49,43)(12,82,50,44)(17,90,108,80)(18,91,105,77)(19,92,106,78)(20,89,107,79)(21,104,128,76)(22,101,125,73)(23,102,126,74)(24,103,127,75)(25,69,33,57)(26,70,34,58)(27,71,35,59)(28,72,36,60)(29,65,37,61)(30,66,38,62)(31,67,39,63)(32,68,40,64)(85,111,115,121)(86,112,116,122)(87,109,113,123)(88,110,114,124), (1,6,31,107)(2,5,32,106)(3,8,29,105)(4,7,30,108)(9,24,33,123)(10,23,34,122)(11,22,35,121)(12,21,36,124)(13,117,37,18)(14,120,38,17)(15,119,39,20)(16,118,40,19)(25,109,51,127)(26,112,52,126)(27,111,49,125)(28,110,50,128)(41,79,69,93)(42,78,70,96)(43,77,71,95)(44,80,72,94)(45,75,65,113)(46,74,66,116)(47,73,67,115)(48,76,68,114)(53,101,63,85)(54,104,64,88)(55,103,61,87)(56,102,62,86)(57,97,83,89)(58,100,84,92)(59,99,81,91)(60,98,82,90) );

G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,35,29,9),(2,36,30,10),(3,33,31,11),(4,34,32,12),(5,23,108,124),(6,24,105,121),(7,21,106,122),(8,22,107,123),(13,25,39,49),(14,26,40,50),(15,27,37,51),(16,28,38,52),(17,110,118,126),(18,111,119,127),(19,112,120,128),(20,109,117,125),(41,61,71,53),(42,62,72,54),(43,63,69,55),(44,64,70,56),(45,81,67,57),(46,82,68,58),(47,83,65,59),(48,84,66,60),(73,99,113,89),(74,100,114,90),(75,97,115,91),(76,98,116,92),(77,103,93,85),(78,104,94,86),(79,101,95,87),(80,102,96,88)], [(1,47,15,53),(2,48,16,54),(3,45,13,55),(4,46,14,56),(5,96,118,100),(6,93,119,97),(7,94,120,98),(8,95,117,99),(9,83,51,41),(10,84,52,42),(11,81,49,43),(12,82,50,44),(17,90,108,80),(18,91,105,77),(19,92,106,78),(20,89,107,79),(21,104,128,76),(22,101,125,73),(23,102,126,74),(24,103,127,75),(25,69,33,57),(26,70,34,58),(27,71,35,59),(28,72,36,60),(29,65,37,61),(30,66,38,62),(31,67,39,63),(32,68,40,64),(85,111,115,121),(86,112,116,122),(87,109,113,123),(88,110,114,124)], [(1,6,31,107),(2,5,32,106),(3,8,29,105),(4,7,30,108),(9,24,33,123),(10,23,34,122),(11,22,35,121),(12,21,36,124),(13,117,37,18),(14,120,38,17),(15,119,39,20),(16,118,40,19),(25,109,51,127),(26,112,52,126),(27,111,49,125),(28,110,50,128),(41,79,69,93),(42,78,70,96),(43,77,71,95),(44,80,72,94),(45,75,65,113),(46,74,66,116),(47,73,67,115),(48,76,68,114),(53,101,63,85),(54,104,64,88),(55,103,61,87),(56,102,62,86),(57,97,83,89),(58,100,84,92),(59,99,81,91),(60,98,82,90)]])

38 conjugacy classes

class 1 2A···2G4A···4H4I···4R4S4T4U4V8A···8H
order12···24···44···444448···8
size11···12···24···488884···4

38 irreducible representations

dim1111112222224
type++++++-+-+
imageC1C2C2C2C2C4D4Q8D4SD16Q16C4○D4C8⋊C22
kernelC42.121D4C22.4Q16C4×C4⋊C4C2×C4⋊C8C2×C4⋊Q8C4⋊Q8C42C4⋊C4C22×C4C2×C4C2×C4C2×C4C22
# reps1411182424442

Matrix representation of C42.121D4 in GL5(𝔽17)

160000
011500
011600
00010
00001
,
160000
016000
001600
00001
000160
,
130000
016200
016100
0001311
000114
,
160000
013000
013400
000716
0001610

G:=sub<GL(5,GF(17))| [16,0,0,0,0,0,1,1,0,0,0,15,16,0,0,0,0,0,1,0,0,0,0,0,1],[16,0,0,0,0,0,16,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,1,0],[13,0,0,0,0,0,16,16,0,0,0,2,1,0,0,0,0,0,13,11,0,0,0,11,4],[16,0,0,0,0,0,13,13,0,0,0,0,4,0,0,0,0,0,7,16,0,0,0,16,10] >;

C42.121D4 in GAP, Magma, Sage, TeX

C_4^2._{121}D_4
% in TeX

G:=Group("C4^2.121D4");
// GroupNames label

G:=SmallGroup(128,719);
// by ID

G=gap.SmallGroup(128,719);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,400,422,100,1018,248,2028,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=c^4=1,d^2=a^2*b^2,a*b=b*a,a*c=c*a,d*a*d^-1=a^-1,c*b*c^-1=d*b*d^-1=b^-1,d*c*d^-1=a^2*b*c^-1>;
// generators/relations

׿
×
𝔽